Showing posts with label usb networking. Show all posts
Showing posts with label usb networking. Show all posts

20090224

Linux Console Via Bluetooth

These days, I find myself hacking, reverse engineering, whatever, several mobile devices that run Windows Mobile. A really great tool that I've started using is called HaRET (Handset Reverse Engineering Tool). In most, it's necessary to get terminal access to them in order to perform low-level debugging. Sometimes, a mobile device will have Linux USB OTG support without any hassle, and I can use the g_ether kernel module to bring up usb0 as a network device at boot time, assigning a static IP address. Then, by using usbnet and other kernel modules on my workstation, I am able to communicate to the mobile device using telnet or ssh. Great!

However, in many cases, USB OTG does not work "out of the box". Furthermore, given that the LCD rarely ever works "out of the box", that leaves me with very few options for getting any type of feedback from the mobile device at all, aside from maybe generating morse code with the vibration unit - that's a joke... please believe me.

It's very necessary to have terminal access, or ICE access, to perform low-level debugging when porting Linux to a new mobile device. One option is to find unpopulated pads on the PCB, where a UART has possibly had pins brought out, and to solder some wires directly to those pads and create the appropriate level-shifter circuit, attaching an RS232 cable to the workstation. Another possibility is to use the JTAG port. In some cases, neither of those options will work because either a) the pins have not been brought out,  or b) the JTAG port has been fused (See my previous opinions on Fusing the JTAG port). In many cases, there is a debug port on the board, with an unpopulated header. Finding the appropriate header and FPC cable is sometimes possible, but in many cases it's like looking for a needle in a haystack. Luckily, I found that needle in my last reverse engineering project, and fabricated a small PCB to bring out the pins of the FFC connected to the UARTS of the embedded device.

When I don't find that needle, then I'm left having to do some very creative reverse engineering. My suggestion: Why not build a small daemon into the kernel that would actually bring up the system console over bluetooth? Most, if not all, mobile devices manufactured in the last decade have bluetooth hardware directly connected to one of the UARTS. I can't imagine that it would be terribly difficult to build something like this into the kernel. My only main concern would be missing valuable information that the Linux kernel spits out at boot time. To counter that, I would probably introduce a "consoledelay" boot parameter, that functioned much like the "rootdelay" boot parameter. Such a boot parameter would allow the underlying hardware of the console to initialize before performing any IO on it.

If anyone feels like funding me to build this into the kernel, I am very open to suggestions :)

20080912

BeagleBoard Notes

My BeagleBoard recently arrived from DigiKey and after resoldering an RS232 connector and downloading the binary images, I was good to go.

If you're planning on only using the BeagleBoard as a USB gadget, connected to a PC, where the PC acts as the USB master, then you do not need to worry about a USB Mini A cable.

If you would like to network the BeagleBoard and a PC through the USB OTG port, then a USB Mini A cable is not necessary. You would use a regular USB Mini B cable which is the type used for most digital cameras.